412 lines
		
	
	
		
			13 KiB
		
	
	
	
		
			Python
		
	
	
	
	
	
			
		
		
	
	
			412 lines
		
	
	
		
			13 KiB
		
	
	
	
		
			Python
		
	
	
	
	
	
| from __future__ import annotations
 | |
| 
 | |
| import itertools
 | |
| import math
 | |
| import random
 | |
| from typing import TYPE_CHECKING, Iterable, List, Set, Tuple, Union
 | |
| 
 | |
| from s2clientprotocol import common_pb2 as common_pb
 | |
| 
 | |
| if TYPE_CHECKING:
 | |
|     from .unit import Unit
 | |
|     from .units import Units
 | |
| 
 | |
| EPSILON = 10**-8
 | |
| 
 | |
| 
 | |
| def _sign(num):
 | |
|     return math.copysign(1, num)
 | |
| 
 | |
| 
 | |
| class Pointlike(tuple):
 | |
| 
 | |
|     @property
 | |
|     def position(self) -> Pointlike:
 | |
|         return self
 | |
| 
 | |
|     def distance_to(self, target: Union[Unit, Point2]) -> float:
 | |
|         """Calculate a single distance from a point or unit to another point or unit
 | |
| 
 | |
|         :param target:"""
 | |
|         p = target.position
 | |
|         return math.hypot(self[0] - p[0], self[1] - p[1])
 | |
| 
 | |
|     def distance_to_point2(self, p: Union[Point2, Tuple[float, float]]) -> float:
 | |
|         """Same as the function above, but should be a bit faster because of the dropped asserts
 | |
|         and conversion.
 | |
| 
 | |
|         :param p:"""
 | |
|         return math.hypot(self[0] - p[0], self[1] - p[1])
 | |
| 
 | |
|     def _distance_squared(self, p2: Point2) -> float:
 | |
|         """Function used to not take the square root as the distances will stay proportionally the same.
 | |
|         This is to speed up the sorting process.
 | |
| 
 | |
|         :param p2:"""
 | |
|         return (self[0] - p2[0])**2 + (self[1] - p2[1])**2
 | |
| 
 | |
|     def sort_by_distance(self, ps: Union[Units, Iterable[Point2]]) -> List[Point2]:
 | |
|         """This returns the target points sorted as list.
 | |
|         You should not pass a set or dict since those are not sortable.
 | |
|         If you want to sort your units towards a point, use 'units.sorted_by_distance_to(point)' instead.
 | |
| 
 | |
|         :param ps:"""
 | |
|         return sorted(ps, key=lambda p: self.distance_to_point2(p.position))
 | |
| 
 | |
|     def closest(self, ps: Union[Units, Iterable[Point2]]) -> Union[Unit, Point2]:
 | |
|         """This function assumes the 2d distance is meant
 | |
| 
 | |
|         :param ps:"""
 | |
|         assert ps, "ps is empty"
 | |
|         # pylint: disable=W0108
 | |
|         return min(ps, key=lambda p: self.distance_to(p))
 | |
| 
 | |
|     def distance_to_closest(self, ps: Union[Units, Iterable[Point2]]) -> float:
 | |
|         """This function assumes the 2d distance is meant
 | |
|         :param ps:"""
 | |
|         assert ps, "ps is empty"
 | |
|         closest_distance = math.inf
 | |
|         for p2 in ps:
 | |
|             p2 = p2.position
 | |
|             distance = self.distance_to(p2)
 | |
|             if distance <= closest_distance:
 | |
|                 closest_distance = distance
 | |
|         return closest_distance
 | |
| 
 | |
|     def furthest(self, ps: Union[Units, Iterable[Point2]]) -> Union[Unit, Pointlike]:
 | |
|         """This function assumes the 2d distance is meant
 | |
| 
 | |
|         :param ps: Units object, or iterable of Unit or Point2"""
 | |
|         assert ps, "ps is empty"
 | |
|         # pylint: disable=W0108
 | |
|         return max(ps, key=lambda p: self.distance_to(p))
 | |
| 
 | |
|     def distance_to_furthest(self, ps: Union[Units, Iterable[Point2]]) -> float:
 | |
|         """This function assumes the 2d distance is meant
 | |
| 
 | |
|         :param ps:"""
 | |
|         assert ps, "ps is empty"
 | |
|         furthest_distance = -math.inf
 | |
|         for p2 in ps:
 | |
|             p2 = p2.position
 | |
|             distance = self.distance_to(p2)
 | |
|             if distance >= furthest_distance:
 | |
|                 furthest_distance = distance
 | |
|         return furthest_distance
 | |
| 
 | |
|     def offset(self, p) -> Pointlike:
 | |
|         """
 | |
| 
 | |
|         :param p:
 | |
|         """
 | |
|         return self.__class__(a + b for a, b in itertools.zip_longest(self, p[:len(self)], fillvalue=0))
 | |
| 
 | |
|     def unit_axes_towards(self, p):
 | |
|         """
 | |
| 
 | |
|         :param p:
 | |
|         """
 | |
|         return self.__class__(_sign(b - a) for a, b in itertools.zip_longest(self, p[:len(self)], fillvalue=0))
 | |
| 
 | |
|     def towards(self, p: Union[Unit, Pointlike], distance: Union[int, float] = 1, limit: bool = False) -> Pointlike:
 | |
|         """
 | |
| 
 | |
|         :param p:
 | |
|         :param distance:
 | |
|         :param limit:
 | |
|         """
 | |
|         p = p.position
 | |
|         # assert self != p, f"self is {self}, p is {p}"
 | |
|         # TODO test and fix this if statement
 | |
|         if self == p:
 | |
|             return self
 | |
|         # end of test
 | |
|         d = self.distance_to(p)
 | |
|         if limit:
 | |
|             distance = min(d, distance)
 | |
|         return self.__class__(
 | |
|             a + (b - a) / d * distance for a, b in itertools.zip_longest(self, p[:len(self)], fillvalue=0)
 | |
|         )
 | |
| 
 | |
|     def __eq__(self, other):
 | |
|         try:
 | |
|             return all(abs(a - b) <= EPSILON for a, b in itertools.zip_longest(self, other, fillvalue=0))
 | |
|         except TypeError:
 | |
|             return False
 | |
| 
 | |
|     def __hash__(self):
 | |
|         return hash(tuple(self))
 | |
| 
 | |
| 
 | |
| # pylint: disable=R0904
 | |
| class Point2(Pointlike):
 | |
| 
 | |
|     @classmethod
 | |
|     def from_proto(cls, data) -> Point2:
 | |
|         """
 | |
|         :param data:
 | |
|         """
 | |
|         return cls((data.x, data.y))
 | |
| 
 | |
|     @property
 | |
|     def as_Point2D(self) -> common_pb.Point2D:
 | |
|         return common_pb.Point2D(x=self.x, y=self.y)
 | |
| 
 | |
|     @property
 | |
|     def as_PointI(self) -> common_pb.PointI:
 | |
|         """Represents points on the minimap. Values must be between 0 and 64."""
 | |
|         return common_pb.PointI(x=self.x, y=self.y)
 | |
| 
 | |
|     @property
 | |
|     def rounded(self) -> Point2:
 | |
|         return Point2((math.floor(self[0]), math.floor(self[1])))
 | |
| 
 | |
|     @property
 | |
|     def length(self) -> float:
 | |
|         """ This property exists in case Point2 is used as a vector. """
 | |
|         return math.hypot(self[0], self[1])
 | |
| 
 | |
|     @property
 | |
|     def normalized(self) -> Point2:
 | |
|         """ This property exists in case Point2 is used as a vector. """
 | |
|         length = self.length
 | |
|         # Cannot normalize if length is zero
 | |
|         assert length
 | |
|         return self.__class__((self[0] / length, self[1] / length))
 | |
| 
 | |
|     @property
 | |
|     def x(self) -> float:
 | |
|         return self[0]
 | |
| 
 | |
|     @property
 | |
|     def y(self) -> float:
 | |
|         return self[1]
 | |
| 
 | |
|     @property
 | |
|     def to2(self) -> Point2:
 | |
|         return Point2(self[:2])
 | |
| 
 | |
|     @property
 | |
|     def to3(self) -> Point3:
 | |
|         return Point3((*self, 0))
 | |
| 
 | |
|     def round(self, decimals: int) -> Point2:
 | |
|         """Rounds each number in the tuple to the amount of given decimals."""
 | |
|         return Point2((round(self[0], decimals), round(self[1], decimals)))
 | |
| 
 | |
|     def offset(self, p: Point2) -> Point2:
 | |
|         return Point2((self[0] + p[0], self[1] + p[1]))
 | |
| 
 | |
|     def random_on_distance(self, distance) -> Point2:
 | |
|         if isinstance(distance, (tuple, list)):  # interval
 | |
|             distance = distance[0] + random.random() * (distance[1] - distance[0])
 | |
| 
 | |
|         assert distance > 0, "Distance is not greater than 0"
 | |
|         angle = random.random() * 2 * math.pi
 | |
| 
 | |
|         dx, dy = math.cos(angle), math.sin(angle)
 | |
|         return Point2((self.x + dx * distance, self.y + dy * distance))
 | |
| 
 | |
|     def towards_with_random_angle(
 | |
|         self,
 | |
|         p: Union[Point2, Point3],
 | |
|         distance: Union[int, float] = 1,
 | |
|         max_difference: Union[int, float] = (math.pi / 4),
 | |
|     ) -> Point2:
 | |
|         tx, ty = self.to2.towards(p.to2, 1)
 | |
|         angle = math.atan2(ty - self.y, tx - self.x)
 | |
|         angle = (angle - max_difference) + max_difference * 2 * random.random()
 | |
|         return Point2((self.x + math.cos(angle) * distance, self.y + math.sin(angle) * distance))
 | |
| 
 | |
|     def circle_intersection(self, p: Point2, r: Union[int, float]) -> Set[Point2]:
 | |
|         """self is point1, p is point2, r is the radius for circles originating in both points
 | |
|         Used in ramp finding
 | |
| 
 | |
|         :param p:
 | |
|         :param r:"""
 | |
|         assert self != p, "self is equal to p"
 | |
|         distanceBetweenPoints = self.distance_to(p)
 | |
|         assert r >= distanceBetweenPoints / 2
 | |
|         # remaining distance from center towards the intersection, using pythagoras
 | |
|         remainingDistanceFromCenter = (r**2 - (distanceBetweenPoints / 2)**2)**0.5
 | |
|         # center of both points
 | |
|         offsetToCenter = Point2(((p.x - self.x) / 2, (p.y - self.y) / 2))
 | |
|         center = self.offset(offsetToCenter)
 | |
| 
 | |
|         # stretch offset vector in the ratio of remaining distance from center to intersection
 | |
|         vectorStretchFactor = remainingDistanceFromCenter / (distanceBetweenPoints / 2)
 | |
|         v = offsetToCenter
 | |
|         offsetToCenterStretched = Point2((v.x * vectorStretchFactor, v.y * vectorStretchFactor))
 | |
| 
 | |
|         # rotate vector by 90° and -90°
 | |
|         vectorRotated1 = Point2((offsetToCenterStretched.y, -offsetToCenterStretched.x))
 | |
|         vectorRotated2 = Point2((-offsetToCenterStretched.y, offsetToCenterStretched.x))
 | |
|         intersect1 = center.offset(vectorRotated1)
 | |
|         intersect2 = center.offset(vectorRotated2)
 | |
|         return {intersect1, intersect2}
 | |
| 
 | |
|     @property
 | |
|     def neighbors4(self) -> set:
 | |
|         return {
 | |
|             Point2((self.x - 1, self.y)),
 | |
|             Point2((self.x + 1, self.y)),
 | |
|             Point2((self.x, self.y - 1)),
 | |
|             Point2((self.x, self.y + 1)),
 | |
|         }
 | |
| 
 | |
|     @property
 | |
|     def neighbors8(self) -> set:
 | |
|         return self.neighbors4 | {
 | |
|             Point2((self.x - 1, self.y - 1)),
 | |
|             Point2((self.x - 1, self.y + 1)),
 | |
|             Point2((self.x + 1, self.y - 1)),
 | |
|             Point2((self.x + 1, self.y + 1)),
 | |
|         }
 | |
| 
 | |
|     def negative_offset(self, other: Point2) -> Point2:
 | |
|         return self.__class__((self[0] - other[0], self[1] - other[1]))
 | |
| 
 | |
|     def __add__(self, other: Point2) -> Point2:
 | |
|         return self.offset(other)
 | |
| 
 | |
|     def __sub__(self, other: Point2) -> Point2:
 | |
|         return self.negative_offset(other)
 | |
| 
 | |
|     def __neg__(self) -> Point2:
 | |
|         return self.__class__(-a for a in self)
 | |
| 
 | |
|     def __abs__(self) -> float:
 | |
|         return math.hypot(self.x, self.y)
 | |
| 
 | |
|     def __bool__(self) -> bool:
 | |
|         if self.x != 0 or self.y != 0:
 | |
|             return True
 | |
|         return False
 | |
| 
 | |
|     def __mul__(self, other: Union[int, float, Point2]) -> Point2:
 | |
|         try:
 | |
|             return self.__class__((self.x * other.x, self.y * other.y))
 | |
|         except AttributeError:
 | |
|             return self.__class__((self.x * other, self.y * other))
 | |
| 
 | |
|     def __rmul__(self, other: Union[int, float, Point2]) -> Point2:
 | |
|         return self.__mul__(other)
 | |
| 
 | |
|     def __truediv__(self, other: Union[int, float, Point2]) -> Point2:
 | |
|         if isinstance(other, self.__class__):
 | |
|             return self.__class__((self.x / other.x, self.y / other.y))
 | |
|         return self.__class__((self.x / other, self.y / other))
 | |
| 
 | |
|     def is_same_as(self, other: Point2, dist=0.001) -> bool:
 | |
|         return self.distance_to_point2(other) <= dist
 | |
| 
 | |
|     def direction_vector(self, other: Point2) -> Point2:
 | |
|         """ Converts a vector to a direction that can face vertically, horizontally or diagonal or be zero, e.g. (0, 0), (1, -1), (1, 0) """
 | |
|         return self.__class__((_sign(other.x - self.x), _sign(other.y - self.y)))
 | |
| 
 | |
|     def manhattan_distance(self, other: Point2) -> float:
 | |
|         """
 | |
|         :param other:
 | |
|         """
 | |
|         return abs(other.x - self.x) + abs(other.y - self.y)
 | |
| 
 | |
|     @staticmethod
 | |
|     def center(points: List[Point2]) -> Point2:
 | |
|         """Returns the central point for points in list
 | |
| 
 | |
|         :param points:"""
 | |
|         s = Point2((0, 0))
 | |
|         for p in points:
 | |
|             s += p
 | |
|         return s / len(points)
 | |
| 
 | |
| 
 | |
| class Point3(Point2):
 | |
| 
 | |
|     @classmethod
 | |
|     def from_proto(cls, data) -> Point3:
 | |
|         """
 | |
|         :param data:
 | |
|         """
 | |
|         return cls((data.x, data.y, data.z))
 | |
| 
 | |
|     @property
 | |
|     def as_Point(self) -> common_pb.Point:
 | |
|         return common_pb.Point(x=self.x, y=self.y, z=self.z)
 | |
| 
 | |
|     @property
 | |
|     def rounded(self) -> Point3:
 | |
|         return Point3((math.floor(self[0]), math.floor(self[1]), math.floor(self[2])))
 | |
| 
 | |
|     @property
 | |
|     def z(self) -> float:
 | |
|         return self[2]
 | |
| 
 | |
|     @property
 | |
|     def to3(self) -> Point3:
 | |
|         return Point3(self)
 | |
| 
 | |
|     def __add__(self, other: Union[Point2, Point3]) -> Point3:
 | |
|         if not isinstance(other, Point3) and isinstance(other, Point2):
 | |
|             return Point3((self.x + other.x, self.y + other.y, self.z))
 | |
|         return Point3((self.x + other.x, self.y + other.y, self.z + other.z))
 | |
| 
 | |
| 
 | |
| class Size(Point2):
 | |
| 
 | |
|     @property
 | |
|     def width(self) -> float:
 | |
|         return self[0]
 | |
| 
 | |
|     @property
 | |
|     def height(self) -> float:
 | |
|         return self[1]
 | |
| 
 | |
| 
 | |
| class Rect(tuple):
 | |
| 
 | |
|     @classmethod
 | |
|     def from_proto(cls, data):
 | |
|         """
 | |
|         :param data:
 | |
|         """
 | |
|         assert data.p0.x < data.p1.x and data.p0.y < data.p1.y
 | |
|         return cls((data.p0.x, data.p0.y, data.p1.x - data.p0.x, data.p1.y - data.p0.y))
 | |
| 
 | |
|     @property
 | |
|     def x(self) -> float:
 | |
|         return self[0]
 | |
| 
 | |
|     @property
 | |
|     def y(self) -> float:
 | |
|         return self[1]
 | |
| 
 | |
|     @property
 | |
|     def width(self) -> float:
 | |
|         return self[2]
 | |
| 
 | |
|     @property
 | |
|     def height(self) -> float:
 | |
|         return self[3]
 | |
| 
 | |
|     @property
 | |
|     def right(self) -> float:
 | |
|         """ Returns the x-coordinate of the rectangle of its right side. """
 | |
|         return self.x + self.width
 | |
| 
 | |
|     @property
 | |
|     def top(self) -> float:
 | |
|         """ Returns the y-coordinate of the rectangle of its top side. """
 | |
|         return self.y + self.height
 | |
| 
 | |
|     @property
 | |
|     def size(self) -> Size:
 | |
|         return Size((self[2], self[3]))
 | |
| 
 | |
|     @property
 | |
|     def center(self) -> Point2:
 | |
|         return Point2((self.x + self.width / 2, self.y + self.height / 2))
 | |
| 
 | |
|     def offset(self, p):
 | |
|         return self.__class__((self[0] + p[0], self[1] + p[1], self[2], self[3]))
 | 
